The smallest minimal blocking sets of Q(6, q), q even

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the smallest minimal blocking sets of Q(2n, q), for q an odd prime

We characterize the smallest minimal blocking sets of Q(2n, q), q an odd prime, in terms of ovoids of Q(4, q) and Q(6, q). The proofs of these results are written for q = 3, 5, 7 since for these values it was known that every ovoid of Q(4, q) is an elliptic quadric. Recently, in [2], it has been proven that for all q prime, every ovoid of Q(4, q) is an elliptic quadric. Since as many proofs as ...

متن کامل

The size of minimal blocking sets of Q(4, q)

Let Q(2n+2, q) denote the non-singular parabolic quadric in the projective geometry PG(2n+2, q). We describe the implementation in GAP of an algorithm to determine the minimal number of points of a minimal blocking set of Q(4, q), for q = 5, 7

متن کامل

The two smallest minimal blocking sets of Q ( 2 n , 3 ) , n > 3

We describe the two smallest minimal blocking sets of Q(2n, 3), n > 3. To obtain these results, we use the characterization of the smallest minimal blocking sets of Q(6, 3), different from an ovoid. We also present some geometrical properties of ovoids of Q(6, q), q odd.

متن کامل

Minimal blocking sets of size q2+2 of Q(4, q), q an odd prime, do not exist

Consider the finite generalized quadrangle Q(4, q), q odd. An ovoid is a set O of points of Q(4, q) such that every line of the quadric contains exactly one point of O. A blocking set is a set B of points of Q(4, q) such that every line of the quadric contains at least one point of B. A blocking set B is called minimal if for every point p ∈ B, the set B \ {p} is not a blocking set. The GQ Q(4,...

متن کامل

Minimal 1-saturating sets in PG(2, q), q≤16

Minimal 1-saturating sets in the projective plane PG(2, q) are considered. The classification of all the minimal 1-saturating sets in PG(2, q) for q ≤ 8, the classification of the smallest minimal 1-saturating sets in PG(2, q), 9 ≤ q ≤ 13 and the determination of the smallest size of minimal 1-saturating sets in PG(2, 16) are given. These results have been found using a computer-based exhaustiv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Designs

سال: 2003

ISSN: 1063-8539,1520-6610

DOI: 10.1002/jcd.10048